These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differences in body temperature regulation during heat stress and seasonal depression in milk yield between Holstein, Brown Swiss, and crossbred cows.
    Author: Cuellar CJ, Saleem M, Jensen LM, Hansen PJ.
    Journal: J Dairy Sci; 2023 May; 106(5):3625-3632. PubMed ID: 37028972.
    Abstract:
    It is not clear whether cattle that are genetically superior in regulation of body temperature during heat stress are also better able to sustain milk production during hot conditions. Objectives were to evaluate differences in body temperature regulation during heat stress between Holstein, Brown Swiss, and crossbred cows under semi-tropical conditions and test whether the seasonal depression in milk yield was greater for genetic groups less able to regulate body temperature. For the first objective, conducted during heat stress, vaginal temperature was measured at 15-min intervals for 5 d in 133 pregnant lactating cows. Vaginal temperatures were affected by time and interaction between genetic group and time. Vaginal temperatures were higher for Holsteins for most times of the day. Moreover, the maximum daily vaginal temperature was higher for Holstein (39.8 ± 0.1°C) than for Brown Swiss (39.3 ± 0.2°C) or crossbreds (39.2 ± 0.1°C). For the second objective, 6,179 lactation records from 2,976 cows were analyzed to determine effects of genetic group and season of calving (cool season = Oct to March; warm season = April to Sept) on 305-d milk yield. Milk yield was affected by genetic group and season but not by the interaction of genetic group and season. The difference in average 305-d milk yield between cows calving in cool versus hot weather was 310 kg (4% decrease) for Holstein, 480 kg (7% decrease) for Brown Swiss, and 420 kg (6% decrease) for crossbreds. In conclusion, Brown Swiss and crossbreds regulated body temperature during heat stress better than Holsteins but these breeds were not more resistant to heat stress with respect to milk yield. Thus, genetic differences in thermotolerance are likely to exist that are independent of regulation of body temperature.
    [Abstract] [Full Text] [Related] [New Search]