These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Meta attention for Off-Policy Actor-Critic.
    Author: Huang J, Huang W, Lan L, Wu D.
    Journal: Neural Netw; 2023 Jun; 163():86-96. PubMed ID: 37030278.
    Abstract:
    Off-Policy Actor-Critic methods can effectively exploit past experiences and thus they have achieved great success in various reinforcement learning tasks. In many image-based and multi-agent tasks, attention mechanism has been employed in Actor-Critic methods to improve their sampling efficiency. In this paper, we propose a meta attention method for state-based reinforcement learning tasks, which combines attention mechanism and meta-learning based on the Off-Policy Actor-Critic framework. Unlike previous attention-based work, our meta attention method introduces attention in the Actor and the Critic of the typical Actor-Critic framework, rather than in multiple pixels of an image or multiple information sources in specific image-based control tasks or multi-agent systems. In contrast to existing meta-learning methods, the proposed meta-attention approach is able to function in both the gradient-based training phase and the agent's decision-making process. The experimental results demonstrate the superiority of our meta-attention method in various continuous control tasks, which are based on the Off-Policy Actor-Critic methods including DDPG and TD3.
    [Abstract] [Full Text] [Related] [New Search]