These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach. Author: Hossain MSB, Guo Z, Choi H. Journal: IEEE J Biomed Health Inform; 2023 Jun; 27(6):2829-2840. PubMed ID: 37030855. Abstract: Human kinetics, specifically joint moments and ground reaction forces (GRFs) can provide important clinical information and can be used to control assistive devices. Traditionally, collection of kinetics is mostly limited to the lab environment because it relies on data that are measured from a motion capture system and floor-embedded force plates to calculate the dynamics via musculoskeletal models. This spatially limited method makes it extremely challenging to measure kinetics outside the laboratory in a variety of walking conditions due to the expensive device setup and large space required. Recently, employing machine learning with IMU sensors are suggested as an alternative method for biomechanical analyses. Although these methods enable estimating human kinetic data outside the laboratory by linking IMU sensor data with kinetics dataset, they are limited to show inaccurate kinetic estimates even in highly repeatable single walking conditions due to the employment of generic deep learning algorithms. Thus, this paper proposes a novel deep learning model, Kinetics-FM-DLR-Ensemble-Net for single limb prediction of hip, knee, and ankle joint moments and 3-dimensional GRFs using three IMU sensors on the thigh, shank, and foot under several representatives walking conditions in daily living, such as treadmill, level-ground, stair, and ramp. This is the first study that implements both joint moments and GRFs in multiple walking conditions using IMU sensors via deep learning. Our deep learning model is versatile and accurate for identifying human kinetics across diverse subjects and walking conditions and outperforms state-of-the-art deep learning model for kinetics estimation by a large margin.[Abstract] [Full Text] [Related] [New Search]