These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spin-echo MR imaging of intracranial hemorrhage. Author: Dooms GC, Uske A, Brant-Zawadzki M, Kucharczyk W, Lemme-Plaghos L, Newton TH, Norman D. Journal: Neuroradiology; 1986; 28(2):132-8. PubMed ID: 3703235. Abstract: This retrospective study was performed to describe the appearance of intracranial hemorrhagic lesions on magnetic resonance (MR) imaging at 0.35 tesla using the spin-echo technique, and define the present clinical role of MRI in this particular pathology. Forty-eight examinations of forty-three patients with forty-seven intracranial hemorrhagic lesions (39 true hematomas and 8 hemorrhagic lesions mixed with other tissues) were reviewed for this study. Comparative CT studies were available for all the patients. In our limited experience with acute hematomas (less than 3 days old), low or isointense signal was seen with a short TR (0.5 s), but a relative increase in signal intensity was observed with a long TR (2.0 s). This appearance of acute hematoma was not specific. Chronic hematomas (more than 3 days old) were imaged as foci of bright signal intensity on both short and long TR. This pattern was characteristic of chronic hematoma. With a short TR (0.5 s), two hemorrhagic lesions (5 and 7 days old) were displayed as an isointense signal surrounded by a rim of high intensity signal. This peripheral zone most likely represented liquefaction at the clot's periphery and the initial formation of methemoglobin. T1 and T2 relaxation times were found to be very long for acute hematomas (first two days). T1 values of chronic hematomas (more than 3 days old) were comparatively short and in the same range as T1 of white matter. T2 values of chronic hematomas decreased also but remained very long.[Abstract] [Full Text] [Related] [New Search]