These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Control of the fluorescence molecule 2-(2'-hydroxyphenyl) benzothiazole derivatives by introducing electron-donating and withdrawing substituents groups.
    Author: Chen L, He H, Huang X, Xu H, Yu Y.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug 05; 296():122666. PubMed ID: 37043917.
    Abstract:
    Using density functional theory (DFT) and time-dependent density functional theory (TDDFT), we investigate the fluorescence mechanism of (E)-4-(3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylstyryl)-1-methylpyridin-1-ium (HBTMY) and the excited-state intramolecular proton transfer process (ESIPT) of hydroxyphenyl. Herein, we introduce two electron-donating (amino and methoxy) and two electron-withdrawing (hydrogen and cyano) groups into HBTMY to study their effects on the fluorescence and the ESIPT process. Structural parameters, infrared vibration frequency, vertical excitation and emission energies as well as frontier molecular orbitals show that the substituents have different impacts on intramolecular hydrogen bonding behavior. The result shows that the fluorescence wavelength of molecules with the amino group could reach the near-infrared area, which favors using this fluorescence in the living cell. As the ability of electron-absorbing groups increases, the forward energy barrier in the potential energy curves decreases sharply making the ESIPT process more familiar to take place. Thus, this work offers a guide for cell imaging and provides strategies to adjust and control fluorescence by introducing substituents.
    [Abstract] [Full Text] [Related] [New Search]