These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Author: Ferreira J, Wilkinson C, Gil L.
    Journal: Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593.
    Abstract:
    6-Chloro-1,2,3-benzothiadiazole (6-Cl-BTD) is an effective inhibitor of NADH oxidase (site I) but not of succinate oxidase in beef heart submitochondrial particles. For NADH oxidase activity maximal inhibition (80-85%) was achieved at 0.75mM 6-Cl-BTD. A similar level of inhibition was also observed (half maximal inhibitory concentration 0.5mM) towards NADH-duroquinone reductase; NADH-juglone reductase was slightly inhibited (23%) at 0.5mM 6-Cl-BTD while NADH-ferricyanide reductase was unaffected. The data suggest that 6-Cl-BTD interacts with an electron transport site on the oxygen side of NADH dehydrogenase and inhibitory studies with 6-Cl-BTD and rotenone indicate that it might correspond with one of the two sites affected by rotenone. The substituted 1,2,3-benzothiadiazoles (BTDs) are perhaps best known for their activity as inhibitors of cytochrome P-450-mediated mixed-function oxidation (MFO). In vitro, the BTDs are potent inhibitors of MFO activities in microsomes from mammalian liver and insect tissues and they have been demonstrated to inhibit aminopyrine metabolism in perfused rat liver. In vivo, they reportedly prolong hexobarbital sleeping time in mice, inhibit the irreversible binding of labeled trichloro-ethylene to microsomal protein and effectively enhance the toxicity (synergize) of pyrethrin, organophosphorus-containing and carbamate insecticides to insects.
    [Abstract] [Full Text] [Related] [New Search]