These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organoboron- and Cyano-Grafted Solid Polymer Electrolytes Boost the Cyclability and Safety of High-Voltage Lithium Metal Batteries.
    Author: Liu D, Lu Z, Lin Z, Zhang C, Dai K, Wei W.
    Journal: ACS Appl Mater Interfaces; 2023 May 03; 15(17):21112-21122. PubMed ID: 37078862.
    Abstract:
    Solid-state polymer electrolytes (SPEs) are deemed as a class of sought-after candidates for high-safety and high-energy-density solid-state lithium metal batteries, but their low ionic conductivity, narrow electrochemical windows, and severe interfacial deterioration limit their practical implementations. Herein, an organoboron- and cyano-grafted polymer electrolyte (PVNB) was designed using vinylene carbonate as the polymer backbone and organoboron-modified poly(ethylene glycol) methacrylate and acrylonitrile as the grafted phases, which may facilitate Li-ion transport, immobilize the anions, and enlarge the oxidation voltage window; therefore, the well-tailored PVNB exhibits a high Li-ion transference number (tLi+ = 0.86), a wide electrochemical window (>5 V), and a high ionic conductivity (σ = 9.24 × 10-4 S cm-1) at room temperature (RT). As a result, the electrochemical cyclability and safety of the Li|LiFePO4 and Li|LiNi0.8Co0.1Mn0.1O2 cells with in situ polymerization of PVNB are substantially improved by forming the stable organic-inorganic composite cathode electrolyte interphase (CEI) and the Li3N-LiF-rich solid electrolyte interphase (SEI).
    [Abstract] [Full Text] [Related] [New Search]