These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FOXM1 promotes TGF-β2-induced injury of human lens epithelial cells by up regulating VEGFA expression.
    Author: Li X, Gao W, Zhang Y.
    Journal: Graefes Arch Clin Exp Ophthalmol; 2023 Sep; 261(9):2547-2555. PubMed ID: 37079092.
    Abstract:
    OBJECTIVE: To explore whether Fork head box protein M1 (FOXM1) is involved in TGF-β2-induced injury of human lens epithelial cells and its related mechanism. METHODS: Human lens epithelium samples from cataract patients and healthy controls were collected. A cellular epithelial injury model was established by treating HLE-B3 cells with TGF-β2. QPCR, immunoblot assays were performed to detect the levels of FOXM1 in human cataract samples and the lens epithelial injury cell model. FOXM1 siRNA and pcDNA3.1-FOXM1 plasmids were transfected into the cells to knockdown and overexpress FOXM1, respectively. MTT and wound closure and transwell assays were performed to analyze cell proliferation and migration in HLE-B3 cells. Immunoblot assays were also conducted to detect the effects of FOXM1 on EMT, VEGFA and MAPK/ERK signaling. RESULTS: We found high expression of FOXM1 in lens tissues of cataract patients. Silencing of FOXM1 in TGF-β2-induced HLE-B3 cells suppressed cell proliferation, migration, and the EMT process. Mechanistically, we found that downregulation of FOXM1 inhibited the VEGFA/MAPK signaling pathway in TGF-β2-induced HLE-B3 cells. CONCLUSION: FOXM1 promoted TGF-β2-induced injury of human lens epithelial cells (hLECs) by promoting VEGFA expression. FOXM1 could be a potential drug target for the treatment of ocular diseases.
    [Abstract] [Full Text] [Related] [New Search]