These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of decreased ferrochelatase activity on iron and porphyrin content in mitochondria of mice with porphyria induced by griseofulvin.
    Author: Tangerås A.
    Journal: Biochim Biophys Acta; 1986 Jun 03; 882(1):77-84. PubMed ID: 3707999.
    Abstract:
    The content of iron and protoporphyrin in liver mitochondria from mice with porphyria induced by griseofulvin was measured. The amount of porphyrin was 0.0076 +/- 0.0043, 4.11 +/- 0.58 and 22.2 +/- 6.8 nmol/mg protein (n = 5) in mitochondria from control animals and animals treated with griseofulvin for 3 days and 4-5 weeks, respectively. The energy coupling of the mitochondria was greatly diminished after 4-5 weeks of treatment, and the ferrochelatase activity was inhibited 80-90%, compared to that of control animals. Mitochondrial preparations isolated by differential centrifugation were contaminated with iron-containing lysosomes which could be removed by Percoll density-gradient centrifugation. In purified mitochondrial preparations no change in the amount of non-heme iron was found after griseofulvin feeding, representing 3.36 +/- 0.15, 3.97 +/- 0.40 and 3.59 +/- 0.23 nmol/mg protein for control animals, 3 days- and 4-5 weeks-treated animals, respectively (n = 4). A mitochondrial iron pool previously identified in rat liver mitochondria and shown to be available for heme synthesis in vitro (Tangerås, A. (1985) Biochim. Biophys. Acta 843, 199-207) was also present in mitochondria from mice. The magnitude of this iron pool, as well as its availability for heme synthesis, was not changed after treatment of the animals with griseofulvin. The fact that porphyrin, but not iron, accumulated in the mitochondria when ferrochelatase was inhibited is discussed with regard to our understanding of the process of heme synthesis and its regulation.
    [Abstract] [Full Text] [Related] [New Search]