These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrafast colorimetric detection of Cr(VI) based on competition of 8-HQ to Cr(VI) and TMB oxides using GO/AuNPs nanocomposites as peroxidase mimic. Author: Qi Y, Li B, Song D, Xiu FR, Gao X. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122722. PubMed ID: 37080054. Abstract: Rapid detection of ultra-trace heavy metal chromium is very important for ecological environment. Herein, a rapid colorimetric assay was constructed for detecting hexavalent chromium (Cr(VI)) in environment water through the strong peroxidase mimicking activity of graphene oxide/gold nanoparticles (GO/AuNPs) nanocomposites and competition of Cr(VI) to 3,3',5,5'-tetramethylbenzidine (TMB) oxides and 8-hydroxyquinoline (8-HQ). Cr(VI) could effectively prevent the reaction between 8-HQ and TMB oxides to restore the blue color of the system. The detection limit for Cr(VI) was as low as0.018 µM by spectroscopic absorption. Paper-based colorimetric analysis had the detection limit of0.153 µM. The high sensitivity was basically due to the strong peroxidase mimicking activity of GO/AuNPs nanocomposite from synergistic coupling action and the firm chelation between 8-HQ and Cr(VI) from inner-sphere surface complexation. The detection results for real water sample showed that the analysis had feasibility in practical application. It is worth mentioning that the assay is performed by one-step mixing mode at room temperature, and a single test can be completed in half a minute. Indeed, this work not only provided an extremely easy method for real-time detecting Cr(VI) in the environment, but also verified the vitality of colorimetric strategy based on the strong peroxidase mimicking activity and competitive reaction.[Abstract] [Full Text] [Related] [New Search]