These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transparent and Stretchable Electromagnetic Interference Shielding Film with Fence-like Aligned Silver Nanowire Conductive Network. Author: Feng Y, Song J, Han G, Zhou B, Liu C, Shen C. Journal: Small Methods; 2023 Jul; 7(7):e2201490. PubMed ID: 37086128. Abstract: Flexible transparent conductive electrodes (TCEs) that can be used as electromagnetic interference (EMI) shielding materials have a great potential for use as electronic components in optical window and display applications. However, development of TCEs that display high shielding effectiveness (SE) and good stretchability for flexible electronic device applications has proven challenging. Herein, this study describes a stretchable polydimethylsiloxane (PDMS)/silver nanowire (AgNW) TCE with a fence-like aligned conductive network that is fabricated via pre-stretching method. The fence-like AgNW network endowed the PDMS/AgNW film with excellent optoelectronic properties, i.e., low sheet resistance of 7.68 Ω sq-1 at 73.7% optical transmittance, thus causing an effective EMI SE of 32.2 dB at X-band. More importantly, the fence-like aligned AgNW conductive network reveals a high stability toward tensile deformation, thus gives the PDMS/AgNW film stretch-stable conductivity and EMI shielding property in the strain range of 0-100%. Typically, the film can reserve ≈70% or 80% of its initial EMI SE when stretching at 100% strain or stretching/releasing (50% strain) for 128 cycles, respectively. Additionally, the film exhibits a low-voltage driven and stretchable Joule heating performance. With these overall performances, the PDMS/AgNW film should be well suited for use in flexible and stretchable optical electronic devices.[Abstract] [Full Text] [Related] [New Search]