These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantification of fatty acid activation of the uncoupling protein in brown adipocytes and mitochondria from the guinea-pig. Author: Cunningham SA, Wiesinger H, Nicholls DG. Journal: Eur J Biochem; 1986 Jun 02; 157(2):415-20. PubMed ID: 3709541. Abstract: Brown adipocytes from cold-adapted guinea-pigs (C-cells) are more sensitive to uncoupling by exogenous palmitate than are cells from warm-adapted animals (W-cells) with much less uncoupling protein. Half-maximal respiratory stimulation of C-cells requires 80 nM free palmitate. Noradrenaline-stimulated lipolysis is not rate-limiting for the respiration of either C-cells or W-cells. Half-maximal stimulation of fatty acid oxidation by mitochondria from warm-adapted guinea-pigs (W-mitochondria) and cold-adapted guinea-pigs (C-mitochondria) both require 12 nM free palmitate. Palmitate uncouples C-mitochondria much more readily than M-mitochondria, paralleling its action on the adipocytes. The uncoupling is partially saturable, about 100 nM free palmitate being required for half-maximal response of C-mitochondria. W- and C-mitochondria show identical binding characteristics for palmitate. The respiratory increase of mitochondria is calculated as a function of bound palmitate. After correcting for the residual uncoupling protein present in W-mitochondria, palmitate is estimated to be almost ineffective as an uncoupler of brown fat mitochondria in the absence of the protein. It is concluded that fatty acids display characteristics required of a necessary and sufficient physiological activator of the uncoupling protein.[Abstract] [Full Text] [Related] [New Search]