These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lysosome directed red light photodynamic therapy using glycosylated iron-(III) conjugates of boron-dipyrromethene. Author: Sahoo S, Pathak S, Kumar A, Nandi D, Chakravarty AR. Journal: J Inorg Biochem; 2023 Jul; 244():112226. PubMed ID: 37105008. Abstract: To overcome the drawbacks associated with chemotherapeutic and porphyrin-based photodynamic therapy (PDT) agents, the use of BODIPY (boron-dipyrromethene) scaffold has gained prominence in designing a new generation of photosensitizers-cum-cellular imaging agents. However, their poor cell permeability and limited solubility in aqueous medium inhibits the in-vitro application of their organic form. This necessitates the development of metal-BODIPY conjugates with improved physiological stability and enhanced therapeutic efficacy. We have designed two iron(III)-BODIPY conjugates, [Fe(L1/2)(L3)Cl] derived from benzyl-dipicolylamine and its glycosylated analogue along with a BODIPY-tagged catecholate. The complexes showed intense absorption bands (ε ∼ 55,000 M-1 cm-1) and demonstrated apoptotic PDT activity upon red-light irradiation (30 J/cm2, 600-720 nm). The complex with singlet oxygen quantum yield value of ∼0.34 gave sub-micromolar IC50 (half-maximal inhibitory concentration) value (∼0.08 μM) in both HeLa and H1299 cancer cells with a photocytotoxicity index value of >1200. Both the complexes were found to have significantly lower cytotoxic effects in non-cancerous HPL1D (human peripheral lung epithelial) cells. Singlet oxygen was determined to be the prime reactive oxygen species (ROS) responsible for cell damage from pUC19 DNA photo-cleavage studies, 1,3-diphenylisobenzofuran and SOSG (Singlet Oxygen Sensor Green) assays. Cellular imaging studies showed excellent fluorescence from complex 2 within 4 h, with localization in lysosomes. Significant drug accumulation into the core of 3D multicellular tumor spheroids was observed within 8 h from intense in-vitro emission. The complexes exemplify iron-based targeted PDT agents and show promising results as potential transition metal-based drugs for ROS mediated red light photocytotoxicity with low dosage requirement.[Abstract] [Full Text] [Related] [New Search]