These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Examining Twitter-Derived Negative Racial Sentiment as Indicators of Cultural Racism: Observational Associations With Preterm Birth and Low Birth Weight Among a Multiracial Sample of Mothers, 2011-2021. Author: Nguyen TT, Merchant JS, Criss S, Makres K, Gowda KN, Mane H, Yue X, Hswen Y, Glymour MM, Nguyen QC, Allen AM. Journal: J Med Internet Res; 2023 Apr 28; 25():e44990. PubMed ID: 37115602. Abstract: BACKGROUND: Large racial and ethnic disparities in adverse birth outcomes persist. Increasing evidence points to the potential role of racism in creating and perpetuating these disparities. Valid measures of area-level racial attitudes and bias remain elusive, but capture an important and underexplored form of racism that may help explain these disparities. Cultural values and attitudes expressed through social media reflect and shape public norms and subsequent behaviors. Few studies have quantified attitudes toward different racial groups using social media with the aim of examining associations with birth outcomes. OBJECTIVE: We used Twitter data to measure state-level racial sentiments and investigate associations with preterm birth (PTB) and low birth weight (LBW) in a multiracial or ethnic sample of mothers in the United States. METHODS: A random 1% sample of publicly available tweets from January 1, 2011, to December 31, 2021, was collected using Twitter's Academic Application Programming Interface (N=56,400,097). Analyses were on English-language tweets from the United States that used one or more race-related keywords. We assessed the sentiment of each tweet using support vector machine, a supervised machine learning model. We used 5-fold cross-validation to assess model performance and achieved high accuracy for negative sentiment classification (91%) and a high F1 score (84%). For each year, the state-level racial sentiment was merged with birth data during that year (~3 million births per year). We estimated incidence ratios for LBW and PTB using log binomial regression models, among all mothers, Black mothers, racially minoritized mothers (Asian, Black, or Latina mothers), and White mothers. Models were controlled for individual-level maternal characteristics and state-level demographics. RESULTS: Mothers living in states in the highest tertile of negative racial sentiment for tweets referencing racial and ethnic minoritized groups had an 8% higher (95% CI 3%-13%) incidence of LBW and 5% higher (95% CI 0%-11%) incidence of PTB compared to mothers living in the lowest tertile. Negative racial sentiment referencing racially minoritized groups was associated with adverse birth outcomes in the total population, among minoritized mothers, and White mothers. Black mothers living in states in the highest tertile of negative Black sentiment had 6% (95% CI 1%-11%) and 7% (95% CI 2%-13%) higher incidence of LBW and PTB, respectively, compared to mothers living in the lowest tertile. Negative Latinx sentiment was associated with a 6% (95% CI 1%-11%) and 3% (95% CI 0%-6%) higher incidence of LBW and PTB among Latina mothers, respectively. CONCLUSIONS: Twitter-derived negative state-level racial sentiment toward racially minoritized groups was associated with a higher risk of adverse birth outcomes among the total population and racially minoritized groups. Policies and supports establishing an inclusive environment accepting of all races and cultures may decrease the overall risk of adverse birth outcomes and reduce racial birth outcome disparities.[Abstract] [Full Text] [Related] [New Search]