These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual-functional MOFs-based hybrid microgel advances aqueous lubrication and anti-inflammation.
    Author: Wu W, Liu J, Lin X, He Z, Zhang H, Ji L, Gong P, Zhou F, Liu W.
    Journal: J Colloid Interface Sci; 2023 Aug 15; 644():200-210. PubMed ID: 37116318.
    Abstract:
    This paper demonstrates the hybridization of copolymer microgel with drug-loaded metal-organic frameworks nanoparticles that can achieve excellent aqueous lubricating performance and anti-inflammatory effect for synergistic treatment of osteoarthritis (OA). Poly(ethylene glycol)-graft-poly(N-isopropylacrylamide) (PEG-g-PNIPAm) microgel layer is grown on the MIL-101(Cr) surface via one-pot soap-free emulsion polymerization method. The lower critical solution temperature of the MIL-101(Cr)@PEG-g-PNIPAm hybrid is raised significantly by incorporating PEG chains into the PNIPAm microgel matrix, which greatly enhances the high-temperature aqueous dispersion stability. The hybrid microgel demonstrated reversibly thermo-sensitive swelling-collapsing behavior to modulate the optical properties and hydrodynamic size. Using as aqueous lubricating additives, the hybrid reduces over 64% and 97% in friction coefficient and wear volume. Also, the hybrid supports desirable temperature-controlled lubrication modulation due to their reversible thermo-responsive behavior, which is benefit to joint lubrication of OA. After encapsulating anti-inflammatory diclofenac sodium (DS), the DS-MIL-101(Cr)@PEG-g-PNIPAm shows thermo-responsive drug release in aqueous media, which can improve the drug-delivery efficiency. By co-culturing the DS-loaded hybrid with human normal chondrocytes, we demonstrate good biocompatibility and anti-inflammatory effect on the chondrocytes with inflammation by regulating the expression of OA-related genes and proteins. Our work establishes multifunctional MOFs-based hybrid microgel systems for advanced colloids modulation and biomedical application.
    [Abstract] [Full Text] [Related] [New Search]