These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The SPL transcription factor genes are potential targets for epigenetic regulation in response to drought stress in chickpea (C. arietinum L.).
    Author: Yadav S, Yadava YK, Meena S, Singh L, Kansal R, Grover M, M S N, Bharadwaj C, Paul V, Gaikwad K, Jain PK.
    Journal: Mol Biol Rep; 2023 Jun; 50(6):5509-5517. PubMed ID: 37119417.
    Abstract:
    BACKGROUND: Crop improvement for tolerance to various biotic and abiotic stress factors necessitates understanding the key gene regulatory mechanisms. One such mechanism of gene regulation involves changes in cytosine methylation at the gene body and flanking regulatory sequences. The present study was undertaken to identify genes which might be potential targets of drought-induced DNA methylation in chickpea. METHODS AND RESULTS: Two chickpea genotypes, which contrast for drought tolerance, were subjected to drought stress conditions and their differential response was studied by analysing different morpho-physiological traits. Utilizing the in-house, high throughput sequencing data, the SQUAMOSA promoter-binding (SBP) protein-like (SPL) transcription factor genes were identified to be differentially methylated and expressed amongst the two genotypes, in response to drought stress. The methylation status of one of these genes was examined and validated through bisulfite PCR (BS-PCR). The identified genes could be possible homologs to known epialleles and can therefore serve as potential epialleles which can be utilized for crop improvement in chickpea. CONCLUSION: The SPL TF genes are potential targets of epigenetic regulation in response to drought stress in chickpea. Since these are TFs, they might play important roles in controlling the expression of other genes, thus contributing to differential drought response of the two genotypes.
    [Abstract] [Full Text] [Related] [New Search]