These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Espresso Science: Laser-Based Diamond Thin-Film Waveguide Sensors for the Quantification of Caffeine.
    Author: Teuber A, Caniglia G, Wild M, Godejohann M, Kranz C, Mizaikoff B.
    Journal: ACS Sens; 2023 May 26; 8(5):1871-1881. PubMed ID: 37125943.
    Abstract:
    Diamond thin-film waveguides with a nanocrystalline diamond layer of approximately 20 μm thickness were used in the mid-infrared regime in combination with quantum cascade lasers to detect the IR signature of caffeine. The diamond thin-film waveguides were fundamentally characterized with respect to their morphological properties via AFM and SEM. Theoretical simulations confirmed the feasibility of using a larger sensing area of approximately 50 mm2 compared to conventionally used strip waveguides. A comprehensive and comparative analysis confirmed the performance of the diamond thin-film-waveguide-based sensing system vs data obtained via conventional attenuated total reflection Fourier transform infrared spectroscopy using a single-bounce diamond internal reflection element. Hence, the utility of innovative diamond thin-film-waveguide-based sensors coupled with quantum cascade laser light sources has been confirmed as an innovative analytical tool, which may be used in a wide range of application scenarios, ranging from environmental to medical sensing, taking advantage of the robustness and inertness of nanocrystalline diamond.
    [Abstract] [Full Text] [Related] [New Search]