These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and characterization of genome-wide long terminal repeat retrotransposons provide an insight into elucidating the trait evolution of five Rhododendron species. Author: Wen S, Zhao H, Qiao G, Shen X. Journal: Plant Biol (Stuttg); 2023 Aug; 25(5):813-828. PubMed ID: 37128942. Abstract: Rhododendron is well-known for its beauty and colourful corolla. Although some high-quality whole-genome sequencing of it has been completed, there are few studies on long terminal repeat (LTR) retrotransposons in Rhododendron, which limits our ability to elucidate the causes of genetic variations in Rhododendron species. Properties of the intact Rhododendron LTR retrotransposons were investigated at a genome-wide level. Based on available data, the high-quality genomes from five species, i.e. R. griersonianum, R. simsii, R. henanense subsp. lingbaoense, R. mucronatum var. ripense and R. ovatum, were selected as targets with good assembly continuity. A total of 17,936 intact LTR retrotransposons were identified; these belong to superfamilies Copia and Gypsy, with 17 clades. The insertion time of these transposons was later than 120 million years ago (Mya), and the outbreak period was concentrated more recently than 30 Mya. Phylogenetic analysis revealed that many LTR retrotransposons might originate from intraspecific duplication. Current evidence also suggests that most LTR retrotransposons were inserted in the interstitial part of genes in R. griersonianum, R. simsii, R. henanense, and R. ovatum, and the functions of the inserted genes mainly involve starch metabolism, proteolysis, etc. The effect of the LTR retrotransposon on gene expression depends on its insertion site and activation. Highly expressed LTR retrotransposons tend to be younger. The results herein improve our knowledge of LTR retrotransposons in Rhododendron genomes and facilitate further study of genetic variation and trait evolution in Rhododendron.[Abstract] [Full Text] [Related] [New Search]