These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bismuth Nanoparticle-Embedded Carbon Microrod for High-Rate Electrochemical Magnesium Storage. Author: Zhang F, Shen Y, Xu H, Zhao X. Journal: ACS Appl Mater Interfaces; 2023 May 17; 15(19):23353-23360. PubMed ID: 37140917. Abstract: Bismuth metal is regarded as a promising magnesium storage anode material for magnesium-ion batteries due to its high theoretical volumetric capacity and a low alloying potential versus magnesium metal. However, the design of highly dispersed bismuth-based composite nanoparticles is always used to achieve efficient magnesium storage, which is adverse to the development of high-density storage. Herein, a bismuth nanoparticle-embedded carbon microrod (Bi⊂CM), which is prepared via annealing of the bismuth metal-organic framework (Bi-MOF), is developed for high-rate magnesium storage. The use of the Bi-MOF precursor synthesized at an optimized solvothermal temperature of 120 °C benefits the formation of the Bi⊂CM-120 composite with a robust structure and a high carbon content. As a result, the as-prepared Bi⊂CM-120 anode compared to pure Bi and other Bi⊂CM anodes exhibits the best rate performance of magnesium storage at various current densities from 0.05 to 3 A g-1. For example, the reversible capacity of the Bi⊂CM-120 anode at 3 A g-1 is ∼17 times higher than that of the pure Bi anode. This performance is also competitive among those of the previously reported Bi-based anodes. Importantly, the microrod structure of the Bi⊂CM-120 anode material remained upon cycling, indicative of good cycling stability.[Abstract] [Full Text] [Related] [New Search]