These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor.
    Author: Li X, Li X, Yan M, Wang Q.
    Journal: Int J Biol Macromol; 2023 Jul 01; 242(Pt 1):124746. PubMed ID: 37148945.
    Abstract:
    Hydrogel sensors attained increasing attention due to their excellent mechanical and sensing properties. However, it is still a big challenge to fabricate hydrogel sensors with multifunctional properties of transparent, high stretchability, self-adhesive and self-healing ability. In this study, chitosan as a natural polymer has been employed to construct a polyacrylamide-chitosan-Al3+ (PAM-CS-Al3+) double network (DN) hydrogel with high transparency (>90 % at 800 nm), good electrical conductivity (up to 5.01 S/m) and excellent mechanical properties (strain and toughness as high as 1040 % and 730 kJ/m3). Moreover, the dynamic ionic and hydrogen bond interaction between PAM and CS endowed the PAM-CS-Al3+ hydrogel good self-healing ability. In addition, the hydrogel possesses good self-adhesive ability on different substrates, including glass, wood, metal, plastic, paper, polytetrafluoroethylene (PTFE) and rubber. Most importantly, the prepared hydrogel could be assembled into transparent, flexible, self-adhesive, self-healing and high sensitive strain/pressure sensor for monitoring human body movement. This work may pave the way for fabricating the multifunctional chitosan-based hydrogels which has potential application in the fields of wearable sensor and soft electronic devices.
    [Abstract] [Full Text] [Related] [New Search]