These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fe-modified fly ash/cotton stalk biochar composites for efficient removal of phosphate in water: mechanisms and green-reuse potential.
    Author: Hao M, Wu W, Habibul N, Chai G, Ma X, Ma X.
    Journal: Environ Sci Pollut Res Int; 2023 Jun; 30(27):70827-70841. PubMed ID: 37155106.
    Abstract:
    Excessive phosphate content input into natural water can lead to the waste of resource and eutrophication. Biochar is a kind of low-cost adsorbent. However, its adsorption capacity for phosphate is low. In order to solve this problem, Fe compound-modified fly ash/cotton stalk biochar composites (Fe-FBC) were prepared through co-pyrolyzed fly ash and cotton stalk at 800℃, followed by infiltration of FeSO4 solution. The samples were characterized by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential. After modification, the hydrophilicity and polarity of Fe-FBC increased. In addition, the pore volume, specific surface area, and surface functional groups were significantly improved. The adsorption behavior of Fe-FBC for the removal of phosphate from water can be well fitted by the pseudo-second-order kinetic and Sips isotherm adsorption model, with a maximum adsorption capacity of 47.91 mg/g. Fe-FBC maintained a high adsorption capacity in the pH range of 3-10. The coexisting anions (NO3-, SO42-, and Cl-) had negligible effects on phosphate adsorption. The adsorption mechanisms of Fe-FBC include electrostatic attraction, ligand exchange, surface complexation, ion exchange, chemical precipitation, and hydrogen bonding. Moreover, the desorption process of phosphate was investigated, indicating that the phosphate-saturated Fe-FBC could use as slow-release phosphate fertilizer. This study proposed a potentially environmental protection and recycling economy approach, which consists of recycling resources and treating wastes with wastes.
    [Abstract] [Full Text] [Related] [New Search]