These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aqueous MXene inks for inkjet-printing microsupercapacitors with ultrahigh energy densities. Author: Wang G, Zhang R, Zhang H, Cheng K. Journal: J Colloid Interface Sci; 2023 Sep; 645():359-370. PubMed ID: 37156144. Abstract: Although inkjet-printing technology has achieved significant development in preparing scalable and adaptable energy storage devices for portable and micro devices, searching for additive-free and environmentally friendly aqueous inks is a significant challenge. Hence, an aqueous MXene/sodium alginate-Fe2+ hybrid ink (denoted as MXene/SA-Fe) with solution processability and suitable viscosity is prepared for direct inkjet printing microsupercapacitors (MSCs). The SA molecules are adsorbed on the surface of MXene nanosheets to construct three-dimensional (3D) structures, thus effectively alleviating the two notorious problems of oxidation and self-restacking of MXene. Concurrently, Fe2+ ions can compress the ineffective macropore volume and make the 3D structure more compact. Moreover, the hydrogen and covalent bonding formed between the MXene nanosheet, SA, and Fe2+ effectively protects the oxidation of MXene and thus increases its stability. Thus, the MXene/SA-Fe ink endows the inkjet-printed MSC electrode with abundant active sites for ion storage and a highly conductive network for electron transfer. As a demonstration, the MXene/SA-Fe ink is used to direct inkjet-printed MSCs with an electrode spacing of 310 μm, which exhibit remarkable capacitances of 123.8 mF cm-2 (@5 mV s-1), good rate capability, an extraordinary energy density of 8.44 μWh cm-2 at a power density of 33.70 μW cm-2, long-term cycling stability of 91.4 % capacitance retention after 10,000 cycles, and surprising mechanical durability with 90.0 % of its initial capacitance retained after 10,000 bending cycles. Therefore, MXene/SA-Fe inks are expected to create various opportunities for printable electronics.[Abstract] [Full Text] [Related] [New Search]