These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contrasting Association of Maternal Plasma Biomarkers of Smoking and 1-Carbon Micronutrients with Offspring DNA Methylation: Evidence of Aryl Hydrocarbon Receptor Repressor Gene-Smoking-Folate Interaction.
    Author: Xu R, Hong X, Ladd-Acosta C, Buckley JP, Choi G, Wang G, Hou W, Wang X, Liang L, Ji H.
    Journal: J Nutr; 2023 Aug; 153(8):2339-2351. PubMed ID: 37156443.
    Abstract:
    BACKGROUND: Maternal prenatal smoking is known to alter offspring DNA methylation (DNAm). However, there are no effective interventions to mitigate smoking-induced DNAm alteration. OBJECTIVES: This study investigated whether 1-carbon nutrients (folate, vitamins B6, and B12) can protect against prenatal smoking-induced offspring DNAm alterations in the aryl hydrocarbon receptor repressor (AHRR) (cg05575921), GFI1 (cg09935388), and CYP1A1 (cg05549655) genes. METHODS: This study included mother-newborn dyads from a racially diverse US birth cohort. The cord blood DNAm at the above 3 sites were derived from a previous study using the Illumina Infinium MethylationEPIC BeadChip. Maternal smoking was assessed by self-report and plasma biomarkers (hydroxycotinine and cotinine). Maternal plasma folate, and vitamins B6 and B12 concentrations were obtained shortly after delivery. Linear regressions, Bayesian kernel machine regression, and quantile g-computation were applied to test the study hypothesis by adjusting for covariables and multiple testing. RESULTS: The study included 834 mother-newborn dyads (16.7% of newborns exposed to maternal smoking). DNAm at cg05575921 (AHRR) and at cg09935388 (GFI1) was inversely associated with maternal smoking biomarkers in a dose-response fashion (all P < 7.01 × 10-13). In contrast, cg05549655 (CYP1A1) was positively associated with maternal smoking biomarkers (P < 2.4 × 10-6). Folate concentrations only affected DNAm levels at cg05575921 (AHRR, P = 0.014). Regression analyses showed that compared with offspring with low hydroxycotinine exposure (<0.494) and adequate maternal folate concentrations (quartiles 2-4), an offspring with high hydroxycotinine exposure (≥0.494) and low folate concentrations (quartile 1) had a significant reduction in DNAm at cg05575921 (M-value, ß ± SE = -0.801 ± 0.117, P = 1.44 × 10-11), whereas adequate folate concentrations could cut smoking-induced hypomethylation by almost half. Exposure mixture models further supported the protective role of adequate folate concentrations against smoking-induced aryl hydrocarbon receptor repressor (AHRR) hypomethylation. CONCLUSIONS: This study found that adequate maternal folate can attenuate maternal smoking-induced offspring AHRR cg05575921 hypomethylation, which has been previously linked to a range of pediatric and adult diseases.
    [Abstract] [Full Text] [Related] [New Search]