These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures. Author: Liu K, Gong T, Luo Y, Kong W, Yue W, Wang C, Luo X. Journal: Opt Express; 2023 May 08; 31(10):15848-15863. PubMed ID: 37157676. Abstract: High-sensitivity, reproducible, and low-cost substrate has been a major obstacle for practical sensing application of surface-enhancement Raman scattering (SERS). In this work, we report a type of simple SERS substrate which is composed of metal-insulator-metal (MIM) structure of Ag nanoisland (AgNI)-SiO2-Ag film (AgF). The substrates are fabricated by only evaporation and sputtering processes, which are simple, fast and low-cost. By combining the hotspots and interference-enhanced effects in AgNIs and the plasmonic cavity (SiO2) between AgNIs and AgF, the proposed SERS substrate shows an enhancement factor (EF) of 1.83 × 108 with limit of detection (LOD) down to 10-17 mol/L for rhodamine 6 G (R6G) molecules. The EFs are ∼18 times higher than that of conventional AgNIs without MIM structure. In addition, the MIM structure shows excellent reproducibility with relative standard deviation (RSD) less than 9%. The proposed SERS substrate is fabricated only with evaporation and sputtering technique and the conventionally used lithographic methods or chemical synthesis are not required. This work provides a simple way to fabricate ultrasensitive and reproducible SERS substrates which show great promise for developing various biochemical sensors with SERS.[Abstract] [Full Text] [Related] [New Search]