These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel Umami-, Salty-, and Kokumi-Enhancing γ-Glutamyl Tripeptides Synthesized with the Bitter Dipeptides from Defatted Peanut Meal Protein Hydrolysate.
    Author: Tu J, Guo J, Dong H, Cheng P, Brennan C, Bai W, Zeng X, Yang J.
    Journal: J Agric Food Chem; 2023 May 24; 71(20):7812-7819. PubMed ID: 37170549.
    Abstract:
    Defatted peanut meal protein hydrolysates (DPMHs) usually have a bitter taste. γ-Glutamylation by Bacillus amyloliquefaciens l-glutaminase was introduced to DPMH to reduce its bitterness and generated a γ-glutamylated product (DPMH-G). Extra l-glutamine (l-Gln) (5% w/w) was added to DPMH, and the mixture was then γ-glutamylated (DPMH-G-Q). Results showed that γ-glutamylation decreased the bitterness of the products and also enhanced their kokumi, umami, and salty taste, especially for DPMH-G-Q. Bitter amino acids and bitter peptides were found to be substrates (acceptors) of the synthesized γ-[Glu](1,2)-AAs and γ-Glu-AA-AAs, respectively. The production yield of γ-[Glu](1,2)-AAs was only 0.69/100 g for DPMH-G and 2.30/100 g for DPMH-G-Q, which was much lower than that of γ-Glu-AA-AAs (5.73/100 g for DPMH-G and 18.72/100 g for DPMH-G-Q). The improvement in taste attributes of DPMH might mainly be due to the consumption of bitter dipeptides and the production of γ-Glu-AA-AAs. In DPMH-G-Q, eight γ-Glu-AA-AAs were identified, including γ-Glu-Ile-Lys, γ-Glu-Ala-Ile, γ-Glu-Leu-Leu, γ-Glu-Phe-Leu, γ-Glu-Thr-Leu, γ-Glu-Ile-Met, γ-Glu-Val-Leu, and γ-Glu-Ser-Tyr, which were first time reported. They all can enhance umami, salty, and kokumi taste with a threshold value between 1.61 ± 0.21-2.16 ± 0.19, 1.65 ± 0.19-2.23 ± 0.20, and 0.67 ± 0.21-1.00 ± 0.22 mM, respectively. Insufficient l-Gln restricted the formation of γ-glutamyl peptides, and this was why DPMH-G had a lower yield and variety than DPMH-G-Q. This also suggested that l-glutaminase is selective to different substrates. Overall, this study provides a new method to reduce the bitterness of protein hydrolysates and also improve the taste by synthesizing γ-glutamyl tripeptides.
    [Abstract] [Full Text] [Related] [New Search]