These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation.
    Author: Li Z, Xie Z, Li W, Aziz HS, Abbas M, Zheng Z, Su Z, Fan P, Chen S, Liang G.
    Journal: Materials (Basel); 2023 Apr 27; 16(9):. PubMed ID: 37176295.
    Abstract:
    Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth's rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm-2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.
    [Abstract] [Full Text] [Related] [New Search]