These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recent advances in core-shell structured catalysts for low-temperature NH3-SCR of NOx.
    Author: Wu T, Guo RT, Li CF, You YH, Pan WG.
    Journal: Chemosphere; 2023 Aug; 333():138942. PubMed ID: 37187371.
    Abstract:
    Ammonia selective catalytic reduction (NH3-SCR) of nitrogen oxides is an effective and well-established technology for NOx removal, but current commercial denitrification catalysts based on V2O5-WO3/TiO2 have some obvious disadvantages, including narrow operating temperature windows, toxicity, poor hydrothermal stability, and unsatisfied SO2/H2O tolerance. To overcome these drawbacks, it is imperative to investigate new types of highly efficient catalysts. In order to design catalysts with outstanding selectivity, activity, and anti-poisoning ability, core-shell structured materials have been widely applied in the NH3-SCR reaction, which exhibits numerous advantages including the large surface area, the strong synergy interaction of core-shell materials, the confinement effect, and the shielding effect from the shell layer to protect the core. This review summarizes recent developments of core-shell structured catalysts for NH3-SCR, including basic classification, synthesis methods, and a detailed description of the performance and mechanisms of each type of catalyst. It is hoped that the review will stimulate future developments in NH3-SCR technology, leading to novel catalyst designs with improved denitrification performance.
    [Abstract] [Full Text] [Related] [New Search]