These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Author: Dufourcq J, Faucon JF, Fourche G, Dasseux JL, Le Maire M, Gulik-Krzywicki T. Journal: Biochim Biophys Acta; 1986 Jul 10; 859(1):33-48. PubMed ID: 3718985. Abstract: Morphological changes induced by the melittin tetramer on bilayers of egg phosphatidylcholine and dipalmitoylphosphatidylcholine have been studied by quasi-elastic light scattering, gel filtration and freeze-fracture electron microscopy. It is concluded that melittin similarly binds and changes the morphology of both single and multilamellar vesicles, provided that their hydrocarbon chains have a disordered conformation, i.e., at temperatures higher than that of the transition, Tm. When the hydrocarbon chains are ordered (gel phase), only small unilamellar vesicles are morphologically affected by melittin. However after incubation at T greater than Tm, major structural changes are detected in the gel phase, regardless of the initial morphology of the lipids. Results from all techniques agree on the following points. At low melittin content, phospholipid-to-peptide molar ratios, Ri greater than 30, heterogeneous systems are observed, the new structures coexisting with the original ones. For lipids in the fluid phase and Ri greater than 12, the complexes formed are large unilamellar vesicles of about 1300 +/- 300 A diameter and showing on freeze-fracture images rough fracture surfaces. For lipids in the gel phase, T less than Tm after passage above Tm, and for 5 less than Ri less than 50, disc-like complexes are observed and isolated. They have a diameter of 235 +/- 23 A and are about one bilayer thick; their composition corresponds to one melittin for about 20 +/- 2 lipid molecules. It is proposed that the discs are constituted by about 1500 lipid molecules arranged in a bilayer and surrounded by a belt of melittin in which the mellitin rods are perpendicular to the bilayer. For high amounts of melittin, Ri less than 2, much smaller and more spherical objects are observed. They are interpreted as corresponding to lipid-peptide co-micelles in which probably no more bilayer structure is left. It is concluded that melittin induces a reorganization of lipid assemblies which can involve different processes, depending on experimental conditions: vesicularization of multibilayers; fusion of small lipid vesicles; fragmentation into discs and micelles. Such processes are discussed in connexion with the mechanism of action of melittin: the lysis of biological membranes and the synergism between melittin and phospholipases.[Abstract] [Full Text] [Related] [New Search]