These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel Isotope-Labeled Derivatization Strategy for the Simultaneous Analysis of Fatty Acids and Fatty Alcohols and Its Application in Idiopathic Inflammatory Myopathies and Pancreatic Cancer.
    Author: Pu Q, Wang M, Jiang N, Luo Y, Li X, Hu C, Du D.
    Journal: Anal Chem; 2023 May 30; 95(21):8197-8205. PubMed ID: 37191225.
    Abstract:
    Fatty acids (FAs) and fatty alcohols (FOHs) are essential compounds for maintaining life. Due to the inherent poor ionization efficiency, low abundance, and complex matrix effect, such metabolites are challenging to precisely quantify and explore deeply. In this study, a pair of novel isotope derivatization reagents known as d0/d5-1-(2-oxo-2-(piperazin-1-yl) ethyl) pyridine-1-ium (d0/d5-OPEPI) were designed and synthesized, and an in-depth screening strategy for FAs and FOHs was established based on d0/d5-OPEPI coupled with liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS). Using this approach, a total of 332 metabolites were identified and annotated (some of the FAs and FOHs were reconfirmed by standards). Our results demonstrated that OPEPI labeling could significantly enhance the MS response of FAs and FOHs via the introduction of permanently charged tags. The detection sensitivities of FAs were increased by 200-2345-fold compared with the nonderivatization method. At the same time, for FOHs, due to the absence of ionizable functional groups, sensitive detection was achieved utilizing OPEPI derivatization. One-to-one internal standards were provided by using d5-OPEPI labeling to minimize the errors in quantitation. Moreover, the method validation results showed that the method was stable and reliable. Finally, the established method was successfully applied to the study of the FA and FOH profiles of two heterogeneous severe clinical disease tissues. This study would improve our understanding of the pathological and metabolic mechanisms of FAs and FOHs for inflammatory myopathies and pancreatic cancer and also prove the generality and accuracy of the developed analytical method for complex samples.
    [Abstract] [Full Text] [Related] [New Search]