These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucagon-like peptide-1 facilitates cerebellar parallel fiber glutamate release through PKA signaling in mice in vitro.
    Author: Wang XY, Liu Y, Cao LX, Li YZ, Wan P, Qiu DL.
    Journal: Sci Rep; 2023 May 16; 13(1):7948. PubMed ID: 37193712.
    Abstract:
    Glucagon-like peptide-1 (GLP-1) is mainly secreted by preproglucagon neurons; it plays important roles in modulating neuronal activity and synaptic transmission through its receptors. In the present study, we investigated the effects of GLP-1 on parallel fiber-Purkinje cell (PF-PC) synaptic transmission in mouse cerebellar slices using whole-cell patch-clamp recording and pharmacology methods. In the presence of a γ-aminobutyric acid type A receptor antagonist, bath application of GLP-1 (100 nM) enhanced PF-PC synaptic transmission, with an increased amplitude of evoked excitatory postsynaptic synaptic currents (EPSCs) and a decreased paired-pulse ratio. The GLP-1-induced enhancement of evoked EPSCs was abolished by a selective GLP-1 receptor antagonist, exendin 9-39, as well as by the extracellular application of a specific protein kinase A (PKA) inhibitor, KT5720. In contrast, inhibiting postsynaptic PKA with a protein kinase inhibitor peptide-containing internal solution failed to block the GLP-1-induced enhancement of evoked EPSCs. In the presence of a mixture of gabazine (20 μM) and tetrodotoxin (1 μM), application GLP-1 significantly increased frequency, but not amplitude of miniature EPSCs via PKA signaling pathway. The GLP-1-induced increase in miniature EPSC frequency was blocked by both exendin 9-39 and KT5720. Together, our results indicate that GLP-1 receptor activation enhances glutamate release at PF-PC synapses via the PKA signaling pathway, resulting in enhanced PF-PC synaptic transmission in mice in vitro. These findings suggest that, in living animals, GLP-1 has a critical role in the modulation of cerebellar function by regulating excitatory synaptic transmission at PF-PC synapses.
    [Abstract] [Full Text] [Related] [New Search]