These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rashba Band Splitting and Bulk Photovoltaic Effect Induced by Halogen Bonds in Hybrid Layered Perovskites. Author: Xue J, Huang Y, Liu Y, Chen Z, Sung HH, Williams ID, Zhu Z, Mao L, Chen X, Lu H. Journal: Angew Chem Int Ed Engl; 2023 Jul 17; 62(29):e202304486. PubMed ID: 37194643. Abstract: Non-covalent interactions play an essential role in directing the self-assembly of hybrid organic-inorganic crystals. In hybrid halide perovskites, hydrogen bonding has been the paramount non-covalent interaction. Here, we show another non-covalent interaction, namely, the halogen bond interaction, that directs a symmetry-breaking assembly in a new series of two-dimensional (2D) perovskites (ICH2 CH2 NH3 )2 (CH3 NH3 )n-1 Pbn I3n+1 (n is the layer thickness, n=1-4). Structural analysis shows that the halogen bond strength varies with the layer thickness. For the odd number (n=1, 3) layered perovskites, stronger halogen interaction leads to centrosymmetric structures, whereas for the n=2 layered perovskites, weaker halogen bonds result in non-centrosymmetric structures. Transient reflection spectroscopy shows a suppressed radiative recombination rate (k2 ≈0) and prolonged spin lifetime for n=2 structure, suggesting an enhanced Rashba band splitting effect. The structural asymmetry is further confirmed with a reversible bulk photovoltaic effect. Our work provides a new design strategy to enable hybrid perovskites with emerging properties and functionalities associated with structural asymmetry.[Abstract] [Full Text] [Related] [New Search]