These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemiluminescence resonance energy transfer-based multistage nucleic acid amplification circuits for MiRNA detection with low background. Author: Kang N, Weng B, Liu S, Yang H, Wang S, Liu Y, Ran J, Liu H, Deng Z, Yang C, Wang H, Wang F. Journal: Analyst; 2023 Jun 12; 148(12):2683-2691. PubMed ID: 37195805. Abstract: Chemiluminescence resonance energy transfer (CRET)-based assays have shown great potential in biosensing due to their negligible background autofluorescence, yet are still limited by their low sensitivity and short half-life luminescence. Herein, a multistage CRET-based DNA circuit was constructed with amplified luminescence signals for accurate miRNA detection and fixed reactive oxygen species (ROS) signals for cell imaging. The DNA circuit is designed through an ingenious programmable catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), and the use of DNAzyme to realize target-triggered precise regulation of distance between the donor and acceptor for CRET-mediated excitation of photosensitizers. In detail, the analyte catalyzes the hybridization of CHA reactants, which leads to the assembly of multiple HCR-mediated DNAzyme nanowires. Subsequently, DNAzymes catalyze the oxidation of luminol by H2O2, and the adjacent photosensitizer chlorin e6 (Ce6) anchored on the DNA nanostructure is stimulated by the CRET process, resulting in the amplified long-wavelength luminescence and the generation of single oxygen signals through further energy transfer to oxygen. The biomarker miRNA can be detected with great sensitivity by integrating the recognition module into a universal platform. Furthermore, the DNA circuit enables CRET-mediated intracellular miRNA imaging, by detecting singlet oxygen signals through a ROS probe. The significant amplification effect is attributed to the robust multiple recognition of the target and the guaranteed transduction of the CRET signal through programmable engineering of DNA nanostructures. The CRET-based DNA circuit achieves amplified long-wavelength luminescence for accurate miRNA detection with low background and ROS-mediated signal fixation for cell imaging, making it a promising candidate for early diagnosis and theranostics.[Abstract] [Full Text] [Related] [New Search]