These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Downregulation of Nogo-B ameliorates cerebral ischemia/reperfusion injury in mice through regulating microglia polarization via TLR4/NF-kappaB pathway.
    Author: Gong P, Jia HY, Li R, Ma Z, Si M, Qian C, Zhu FQ, Sheng-Yong L.
    Journal: Neurochem Int; 2023 Jul; 167():105553. PubMed ID: 37230196.
    Abstract:
    Many studies have shown a close association between Nogo-B and inflammation-related diseases. However, uncertainty does exist, regarding Nogo-B function in the pathological progression of cerebral ischemia/reperfusion (I/R) injury. Middle cerebral artery occlusion/reperfusion (MCAO/R) model was utilized in C57BL/6L mice to mimic ischemic stroke in vivo. Using oxygen-glucose deprivation and reoxygenation (ODG/R) model in microglia cells (BV-2) to establish cerebral I/R injury in vitro. Various methods, including Nogo-B siRNA transfection, mNSS and the rotarod test, TTC, HE and Nissl staining, immunofluorescence staining, immunohistochemistry, Western blot, ELISA, TUNEL and qRT-PCR were employed to probe into the effect of Nogo-B downregulation on cerebral I/R injury and the potential mechanisms. A small amount of Nogo-B expression (protein and mRNA) was observed in cortex and hippocampus before ischemia, then Nogo-B expression increased significantly on day 1, reaching the maximum on day 3, remaining stable on day 14 after I/R, and decreasing gradually after 21 days, but it still rose significantly compared with that observed preischemia. Nogo-B down-regulation could markedly reduce the neurological score and infarct volume, improve the histopathological changes and neuronal apoptosis, lower the number of CD86+/Iba1+ cells and the levels of IL-1β, IL-6, and TNF-α, and raise the density of NeuN fluorescence, the number of CD206+/Iba1+ cells, and the level of IL-4, IL-10 and TGF-β in brain of MCAO/R mice. Treatment with Nogo-B siRNA or TAK-242 in BV-2 cells could obviously decrease the CD86 fluorescence density and the mRNA expression of IL-1β, IL-6 and TNF-α, increase CD206 fluorescence density and the mRNA expression of IL-10 after OGD/R injury. In addition, the expression of TLR4, p-IκBα and p-p65 proteins significantly increased in the brain after MCAO/R and BV-2 cells exposed to OGD/R. Treatment with Nogo-B siRNA or TAK-242 prominently reduced the expression of TLR4, p-IκBα and p-p65. Our findings suggest that the down-regulation of Nogo-B exerts protective effect on cerebral I/R injury by modulating the microglia polarization through inhibiting TLR4/NF-κB signaling pathway. Nogo-B may be a potential therapeutic target for ischemic stroke.
    [Abstract] [Full Text] [Related] [New Search]