These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidase-like Fe-N/C single atom nanozyme enables sensitive detection of ascorbic acid and acid phosphatase.
    Author: Yang D, Chen J, Huang Y, Chen G, Liu X, Wang X, Yang L, Li Z, Hu J, Zhou Q, Ge J, Yang Y.
    Journal: Anal Chim Acta; 2023 Jul 18; 1265():341221. PubMed ID: 37230561.
    Abstract:
    The development of cost-effective and easy-to-use strategies for the detection of ascorbic acid (AA) and acid phosphatase (ACP) is in high demand but challenging. Thus, we report a novel colorimetric platform based on Fe-N/C single atom nanozyme with efficient oxidase mimicking activity for their highly sensitive detection. The designed Fe-N/C single atom nanozyme can directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue oxidation product (oxTMB) in the absence of H2O2. In addition, L-ascorbic acid 2-phosphate can be hydrolyzed to ascorbic acid in the presence of ACP, which inhibits the oxidation reaction and results in a significant bleaching of the blue color. Based on these phenomena, a novel colorimetric assay with high catalytic activity was developed for the determination of ascorbic acid and acid phosphatase with detection limits of 0.092 μM and 0.048 U/L, respectively. Notably, this strategy was successfully applied to the determination of ACP in human serum samples and evaluate ACP inhibitors, indicating its potential as a valuable tool for clinical diagnosis and research.
    [Abstract] [Full Text] [Related] [New Search]