These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cumulative impacts of droughts and N deposition on Norway spruce (Picea abies) in Switzerland based on 37 years of forest monitoring. Author: Tresch S, Roth T, Schindler C, Hopf SE, Remund J, Braun S. Journal: Sci Total Environ; 2023 Sep 20; 892():164223. PubMed ID: 37236453. Abstract: Norway spruce is one of the most important tree species in Central Europe, however, it is facing major problems with recent droughts. In this study we present 37 years (1985-2022) of long-term forest observation data on 82 different forest sites across Switzerland including 134'348 tree observations. The sites consists of managed spruce or mixed forest stands with beech (Fagus sylvatica) and comprise large gradients in altitude (290-1870 m), precipitation (570-2448 mm a-1), temperature (3.6-10.9 °C) or total nitrogen deposition (8.5-81.2 kg N ha-1 a-1). Long-term tree mortality has increased more than fivefold due to the multiple drought years 2019, 2020 and 2022, which is more than double the increase following the 2003 drought. We used a Bayesian multilevel model including three years of lagged drought indicator to predict spruce mortality. Besides stand age, the most important factors were drought and N deposition. Especially under drought conditions spruce mortality was increased on sites with high N deposition. Moreover, N deposition increased the imbalance of foliar phosphorus concentrations, with negative impacts on tree mortality. Mortality was increased by a factor of 1.8 in spruce compared to mixed beech and spruce stands. Stands with high mortality rates showed previously an increased proportion of trees with damaged crowns, especially after the droughts of 2003 and 2018. Taken together, we found evidences of an increase in spruce mortality droughts amplified under high N depositions. The perennial drought of 2018-2020 resulted in a cumulative spruce mortality of 12.1 % (564 dead trees in 82 sites) in only three years. With a Bayesian change-point regression framework we estimated a critical empirical load for nitrogen of 10.9 ± 4.2 kg N ha-1 a-1, which is in line with current thresholds, above which future plantings of spruce in Switzerland may not be a sustainable option due to the observed interaction between drought and nitrogen deposition.[Abstract] [Full Text] [Related] [New Search]