These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study on the role of histone epigenetic modification in replication of hepatitis B virus. Author: Wei F, Meng D. Journal: Biochem Biophys Res Commun; 2023 Aug 20; 669():1-9. PubMed ID: 37247516. Abstract: Hepatitis B virus (HBV) infection is a global health problem and lacks effective therapies in clinic. This study attempted to investigate the role of histone deacetylase 3 (HDAC3) in HBV replication. Cells were treated with 1.3 folds of HBV genome. The expression patterns of HDAC3, miR-29a-3p, and nuclear factor of activated T-cells 5 (NFAT5) in cells were determined by real-time quantitative polymerase chain reaction and Western blot analysis. HBV replication was assessed by measurements of HBV DNA, HBV RNA, hepatitis B surface antigen, and hepatitis B E antigen. After chromatin immunoprecipitation and RNA pull-down assays to testify gene interactions, rescue experiments and animal experiments were performed to assess the role of miR-29a-3p/NFAT5 in HBV replication and the role of HDAC3 in vivo. HDAC3 level was decreased by pHBV1.3 plasmid in a concentration-dependent manner. HDAC3 overexpression can inhibit HBV replication, which was neutralized by miR-29a-3p overexpression or NFAT5 downregulation. Mechanically, HDAC3 overexpression reduced the enrichment of histone 3 lysine 9 acetylation on the miR-29a-3p promoter to inhibit miR-29a-3p expression and then promote NFAT5 transcription. In vivo, HDAC3 restrained HBV replication through the miR-29a-3p/NFAT5 axis. Overall, HDAC3 downregulation was associated with HBV replication and HDAC3 overexpression inhibited HBV replication through H3K9ac/miR-29a-3p/NFAT5.[Abstract] [Full Text] [Related] [New Search]