These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation and characterization of antibacterial, antioxidant, and biocompatible p-coumaric acid modified quaternized chitosan nanoparticles.
    Author: Li B, Chang G, Dang Q, Liu C, Song H, Chen A, Yang M, Shi L, Zhang B, Cha D.
    Journal: Int J Biol Macromol; 2023 Jul 01; 242(Pt 4):125087. PubMed ID: 37247710.
    Abstract:
    To fabricate multifunctional nanoparticles (NPs) based on chitosan (CS) derivative, we first prepared quaternized CS (2-hydroxypropyltrimethyl ammonium chloride CS, HTCC) via a one-step approach, then synthesized p-coumaric acid (p-CA) modified HTCC (HTCC-CA) for the first time through amide reaction, and finally fabricated a series of NPs (HTCC-CA NPs) using HTCC-CAs with different substitution degrees and sodium tripolyphosphate (TPP) by ionic gelation. Newly-prepared HTCC and HTCC-CAs were characterized by FT-IR, 1H NMR, elemental analysis (EA), full-wavelength UV scanning, silver nitrate titration, and Folin-Ciocalteu methods. DLS and TEM results demonstrated that three selected HTCC-CA NPs had moderate size (< 350 nm), good dispersion (PDI < 0.4), and positive zeta potential (11-20 mV). The HTCC-CA NPs had high antibacterial activity against six bacterial strains, and the minimum inhibitory concentration (MIC) values were almost the same as the minimum bactericidal concentration (MBC) values (250-1000 μg/mL). Also, the HTCC-CA NPs had good antioxidation (radical scavenging ratio > 65 %) and low cytotoxicity (relative cell viability >80 %) to the tested cells. Totally, HTCC-CA NPs with high antibacterial activity, great antioxidation, and low cytotoxicity might serve as new biomedical materials for promoting skin wound healing.
    [Abstract] [Full Text] [Related] [New Search]