These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Trimethylamine N-oxide Promotes Atherosclerosis by Regulating Low-Density Lipoprotein-Induced Autophagy in Vascular Smooth Muscle Cells Through PI3K/AKT/mTOR Pathway.
    Author: Shi G, Zeng L, Shi J, Chen Y.
    Journal: Int Heart J; 2023; 64(3):462-469. PubMed ID: 37258122.
    Abstract:
    The research aimed to study the mechanism of how trimethylamine N-oxide (TMAO) regulates autophagy to promote atherosclerosis (AS). The AS in vitro model was constructed with vascular smooth muscle cells (VSMCs) treated with ox-LDL. The Cell Counting Kit-8 (CCK-8) trial was chosen to examine VSMCs' absorbance (OD) value. A transmission electron microscope (TEM) was selected for monitoring autophagosomes. Western blotting (WB) was adopted for examining the expression of Beclin-1, p62, LC3, α-SMA, SM22-α, OPN, PI3K, AKT, mTOR, p-PI3K, p-AKT, and p-mTOR proteins. Real-time fluorescent quantitative PCR (RT-qPCR) was accepted for testing the expression of α-SMA, SM22-α, OPN, PI3K, AKT, mTOR, Beclin-1, p62, and LC3 genes. The transwell assay was employed to examine the ability of migration in VSMCs. Oil red O staining assay was accepted to stain lipid droplets in VSMCs. TMAO noticeably promoted autophagy inhibition and the phenotypic transformation of AS. Protein expressions of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, and p62 of the TMAO+ox-LDL group were higher than the ox-LDL group, while Beclin-1 and LC3 were lower than the ox-LDL group. Gene expressions of PI3K, AKT, mTOR, and p62 of the TMAO+ox-LDL group were higher than the ox-LDL group, while Beclin-1 and LC3 were lower than the ox-LDL group. The intervention of LY294002 reversed the regulation of the corresponding proteins and genes. The study proved that TMAO could promote autophagy inhibition of AS via activating the PI3K/AKT/mTOR pathway. It supplied a reliable basis for improving clinical diagnostic methods and developing targeted AS drugs.
    [Abstract] [Full Text] [Related] [New Search]