These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hemodynamics and vascular sensitivity to circulating norepinephrine in normal skin and delayed and acute random skin flaps in the pig.
    Author: Pang CY, Neligan PC, Forrest CR, Nakatsuka T, Sasaki GH.
    Journal: Plast Reconstr Surg; 1986 Jul; 78(1):75-84. PubMed ID: 3725957.
    Abstract:
    Cutaneous circulation in 4 X 10 cm skin samples and delayed and acute random skin flaps constructed on the flanks of castrated Yorkshire pigs (13.3 +/- 0.7 kg; n = 12) were studied during intravenous infusion (0.5 ml per minute) of 5% dextrose solution (vehicle) and 5% dextrose containing norepinephrine (1 microgram/kg per minute). Total and capillary blood flow and A-V shunt flow were measured by the radioactive microsphere technique 6 hours after the raising of 4 X 10 cm single-pedicle acute and delayed random skin flaps using the technique and calculations published previously. Fluorescein dye test was also performed to assess vascular perfusion. It was observed that the capillary blood flow in the single-pedicle delayed skin flaps was similar to that in the normal skin, and the maintenance of this normal skin blood flow was not due to the closing of A-V shunt flow in the delayed skin flaps. Similarly, the significant (p less than 0.01) decrease in capillary blood flow and distal perfusion in the acute skin flaps compared with the delayed skin flaps was not due to the opening of A-V shunts in the acute skin flaps. There was no evidence to indicate that A-V shunt flow per se was the primary factor for the regulation of capillary blood flow in the acute and delayed skin flaps in the pig. Our data seemed to indicate that tissue ischemia in the distal portion of acute skin flaps was likely the result of vasoconstriction of the small random arteries which supplied blood to arterioles and A-V shunts, and locally released neurohumoral substances may play an important role in the pathogenesis of vascular resistance and ischemia in the acute skin flaps.
    [Abstract] [Full Text] [Related] [New Search]