These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fe3O4@BNPs@ZnO-ZnS as a novel, reusable and efficient photocatalyst for dye removal from synthetic and textile wastewaters. Author: Khodamorady M, Bahrami K. Journal: Heliyon; 2023 Jun; 9(6):e16397. PubMed ID: 37274711. Abstract: In this study, new magnetic nanocomposites with different molar ratios of zinc oxide-zinc sulfide were synthesized together with photocatalysts MNPs@BNPs@ZnO and MNPs@ BNPs@ ZnS. The photocatalytic behavior of these hybrid nanocomposites under visible light and ultraviolet light was investigated to remove methylene blue (MB), methyl orange (MO) dyes, real textile and carton effluents. After studies, the best active photocatalyst in both visible light and ultraviolet light is MNPs@BNPs@ZnO-ZnS (ZnO/ZnS: 0.75:0.25), which displayed the best performance in the ultraviolet region. According to the TEM, the average particle size for MNPs@BNPs@ZnO-ZnS (ZnO/ZnS: 0.75:0.25) is between 10 and 30 nm. Zeta potential (DLS) showed that the charge on the photocatalyst surface is negative at most pHs. PL analysis confirmed that the amount of hole-electron recombination in the optimal photocatalyst is less than MNPs@BNPs@ZnO and MNPs@BNPs@ZnS. Also, based on kinetic studies, the rate constant for removing azo dyes such as MO and MB was 0.0186 and 0.0171 min-1, respectively. It is worth noting that in addition to the novelty of the synthesized photocatalysts, the UV and visible lamps used in this research are inexpensive, durable, and highly efficient.[Abstract] [Full Text] [Related] [New Search]