These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li+ Transport Pathways in a Polymer-Ceramic Electrolyte. Author: Yu J, Zhou G, Li Y, Wang Y, Chen D, Ciucci F. Journal: Small; 2023 Sep; 19(39):e2302691. PubMed ID: 37279776. Abstract: Composite polymer-ceramic electrolytes have shown considerable potential for high-energy-density Li-metal batteries as they combine the benefits of both polymers and ceramics. However, low ionic conductivity and poor contact with electrodes limit their practical usage. In this study, a highly conductive and stable composite electrolyte with a high ceramic loading is developed for high-energy-density Li-metal batteries. The electrolyte, produced through in situ polymerization and composed of a polymer called poly-1,3-dioxolane in a poly(vinylidene fluoride)/ceramic matrix, exhibits excellent room-temperature ionic conductivity of 1.2 mS cm-1 and high stability with Li metal over 1500 h. When tested in a Li|electrolyte|LiFePO4 battery, the electrolyte delivers excellent cycling performance and rate capability at room temperature, with a discharge capacity of 137 mAh g-1 over 500 cycles at 1 C. Furthermore, the electrolyte not only exhibits a high Li+ transference number of 0.76 but also significantly lowers contact resistance (from 157.8 to 2.1 Ω) relative to electrodes. When used in a battery with a high-voltage LiNi0.8 Mn0.1 Co0.1 O2 cathode, a discharge capacity of 140 mAh g-1 is achieved. These results show the potential of composite polymer-ceramic electrolytes in room-temperature solid-state Li-metal batteries and provide a strategy for designing highly conductive polymer-in-ceramic electrolytes with electrode-compatible interfaces.[Abstract] [Full Text] [Related] [New Search]