These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EFFECTS OF NEUROMUSCULAR BLOCKING AGENTS ON THE DIFFERENTIATION OF NERVE-MUSCLE CONNECTIONS IN SLOW AND FAST CHICK MUSCLES. Author: Srihari T, Vrbová G. Journal: Dev Growth Differ; 1980; 22(4):645-657. PubMed ID: 37282122. Abstract: The effects of neuromuscular blocking drugs on the development of slow and fast muscle fibres and their neuromuscular junctions was studied in chick embryos. Treatment of embryos with the depolarizing neuromuscular blocking agent suxamethonium affected the development of muscle fibres of the slow anterior latissimus dorsi (ALD) muscle more than that of muscle fibres of the posterior latissimus dorsi (PLD). The differentiation of the presynaptic elements of the neuromuscular junction was delayed and this was particularly obvious in PLD. Normally the number of axon profiles at individual endplates is reduced by 18 days of incubation, but in suxamethonium treated embryos this reduction took place only at 21 days. During earlier stages of development the axon profiles from treated embryos were small with sparse synaptic vesicles. Nevertheless the subsynaptic site of endplates on ALD and PLD muscle fibres became specialized earlier than normal and to a greater extent. Treatment with hemicholinium (HC-3), a drug that reduces the synthesis of acetylcholine (ACh) in nerve terminals affected the development of PLD muscle fibres more than ALD muscle fibres. Although in HC-3 treated embryos nerve-muscle contacts were formed, the axon terminals look immature and remain small even in 18-day old embryos at both ALD and PLD muscle fibres. The reduction of the number of axon profiles normally seen at 18 days failed to take place in treated embryos. At 18 days of incubation many endplates on PLD muscle fibres showed little sign of postsynaptic specilization and resembled endplates usually seen at this stage on ALD muscle fibres. It is concluded that while neuromuscular activity may be important for the reduction of the number of axon profiles at individual endplates, the specialization of the subsynaptic membrane is brought about by depolarizing effect of ACh.[Abstract] [Full Text] [Related] [New Search]