These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Field-Free Spin-Orbit Torque Driven Switching of Perpendicular Magnetic Tunnel Junction through Bending Current. Author: Kateel V, Krizakova V, Rao S, Cai K, Gupta M, Monteiro MG, Yasin F, Sorée B, De Boeck J, Couet S, Gambardella P, Kar GS, Garello K. Journal: Nano Lett; 2023 Jun 28; 23(12):5482-5489. PubMed ID: 37295781. Abstract: Current-induced spin-orbit torques (SOTs) enable fast and efficient manipulation of the magnetic state of magnetic tunnel junctions (MTJs), making them attractive for memory, in-memory computing, and logic applications. However, the requirement of the external magnetic field to achieve deterministic switching in perpendicularly magnetized SOT-MTJs limits its implementation for practical applications. Here, we introduce a field-free switching (FFS) solution for the SOT-MTJ device by shaping the SOT channel to create a "bend" in the SOT current. The resulting bend in the charge current creates a spatially nonuniform spin current, which translates into inhomogeneous SOT on an adjacent magnetic free layer enabling deterministic switching. We demonstrate FFS experimentally on scaled SOT-MTJs at nanosecond time scales. This proposed scheme is scalable, material-agnostic, and readily compatible with wafer-scale manufacturing, thus creating a pathway for developing purely current-driven SOT systems.[Abstract] [Full Text] [Related] [New Search]