These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: State of the art review on machine learning and artificial intelligence in the study of neonatal necrotizing enterocolitis. Author: McElroy SJ, Lueschow SR. Journal: Front Pediatr; 2023; 11():1182597. PubMed ID: 37303753. Abstract: Necrotizing Enterocolitis (NEC) is one of the leading causes of gastrointestinal emergency in preterm infants. Although NEC was formally described in the 1960's, there is still difficulty in diagnosis and ultimately treatment for NEC due in part to the multifactorial nature of the disease. Artificial intelligence (AI) and machine learning (ML) techniques have been applied by healthcare researchers over the past 30 years to better understand various diseases. Specifically, NEC researchers have used AI and ML to predict NEC diagnosis, NEC prognosis, discover biomarkers, and evaluate treatment strategies. In this review, we discuss AI and ML techniques, the current literature that has applied AI and ML to NEC, and some of the limitations in the field.[Abstract] [Full Text] [Related] [New Search]