These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solvent-Free Loading of Vitamin A Palmitate into β-Cyclodextrin Metal-Organic Frameworks for Stability Enhancement.
    Author: Zhang Y, Chen J, Zhang Z, Zhu H, Ma W, Zhao X, Wang M, Wang C, Chen W, Naeem A, Zhang J, Guo T, Wu L.
    Journal: AAPS PharmSciTech; 2023 Jun 12; 24(5):136. PubMed ID: 37308749.
    Abstract:
    Cyclodextrin metal-organic frameworks (CD-MOFs) exhibit a high structural diversity, which contributes to their functional properties. In this study, we have successfully synthesized a novel type of β-cyclodextrin metal-organic framework (β-CD-POF(I)) that exhibits excellent drug adsorption capacity and enhances stability. Single-crystal X-ray diffraction analysis revealed that β-CD-POF(I) possessed the dicyclodextrin channel moieties and long-parallel tubular cavities. Compared with the reported β-CD-MOFs, the β-CD-POF(I) has a more promising drug encapsulation capability. Here, the stability of vitamin A palmitate (VAP) was effectively improved by the solvent-free method. Molecular modeling and other characterization techniques like synchrotron radiation Fourier transform infrared spectroscopy (SR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and nitrogen adsorption isotherm were applied to confirm that the VAP was successfully encapsulated into the channel formed by the dicyclodextrin pairs. Furthermore, the mechanism of stability enhancement for VAP was determined to be due to the constraint and separation effects of β-CD pairs on VAP. Therefore, β-CD-POF(I) is capable of trapping and stabilizing certain unstable drug molecules, offering benefits and application possibilities. One kind of cyclodextrin particle with characteristic shapes of dicyclodextrin channel moieties and parallel tubular cavities, which was synthesized by a facile process. Subsequently, the spatial structure and characteristics of the β-CD-POF(I) were primarily confirmed. The structure of β-CD-POF(I) was then compared to that of KOH-β-CD-MOF, and a better material for vitamin A palmitate (VAP) encapsulation was determined. VAP was successfully loaded into the particles by solvent-free method. The arrangement of spatial structure made cyclodextrin molecular cavity encapsulation in β-CD-POF(I) more stable for VAP capture than that of KOH-β-CD-MOF.
    [Abstract] [Full Text] [Related] [New Search]