These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The spin caloritronic transport properties of newly designed devices consisting of a sawtooth graphene nanoribbon and its derived five-member ring structure. Author: Ni Y, Chen K, Hu N, Deng G, Liu J, Chen M. Journal: Phys Chem Chem Phys; 2023 Jun 21; 25(24):16578-16586. PubMed ID: 37309551. Abstract: Achieving high spin polarization transport and a pure spin current is particularly desired in spintronics. We use a sawtooth graphene nanoribbon (STGNR) and its derived five-member ring structure (5-STGNR) to design new spin caloritronic devices, since they have been successfully prepared experimentally and have an interface with no lattice distortion. By using first-principle calculations combined with the non-equilibrium Green's function approach, we have studied the spin caloritronic transport properties of several STGNR-based devices, including the structures with symmetrical and asymmetrical edges, and found some excellent spin caloritronic properties, such as spin polarization, magnetoresistance and the spin Seebeck effect. By introducing a temperature difference, giant magnetoresistance and spin Seebeck effects are achieved in a heterojunction with a symmetrical edge, whereas spin polarization is more effective in a heterojunction with an asymmetrical edge. Meanwhile, the metal-semiconductor-metal junction, which is composed of STGNRs with a symmetrical edge, exhibits approximately 100% spin polarization and produces a perfect thermally induced pure spin current at room temperature. Our results indicate that the devices consisting of a sawtooth graphene nanoribbon and its derived five-member ring structure are promising novel spin caloritronic devices.[Abstract] [Full Text] [Related] [New Search]