These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape.
    Author: Kaplan Ö, Truszkowska M, Kali G, Knoll P, Blanco Massani M, Braun DE, Bernkop-Schnürch A.
    Journal: Carbohydr Polym; 2023 Sep 15; 316():121070. PubMed ID: 37321712.
    Abstract:
    This study aimed to evaluate the effect of thiolated α-cyclodextrin (α-CD-SH) on the cellular uptake of its payload. For this purpose, α-CD was thiolated using phosphorous pentasulfide. Thiolated α-CD was characterized by FT-IR and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Cytotoxicity of α-CD-SH was evaluated on Caco-2, HEK 293, and MC3T3 cells. Dilauryl fluorescein (DLF) and coumarin-6 (Cou) serving as surrogates for a pharmaceutical payload were incorporated in α-CD-SH, and cellular uptake was analyzed by flow cytometry and confocal microscopy. Endosomal escape was investigated by confocal microscopy and hemolysis assay. Results showed no cytotoxic effect within 3 h, while dose-dependent cytotoxicity was observed within 24 h. The cellular uptake of DLF and Cou was up to 20- and 11-fold enhanced by α-CD-SH compared to native α-CD, respectively. Furthermore, α-CD-SH provided an endosomal escape. According to these results, α-CD-SH is a promising carrier to shuttle drugs into the cytoplasm of target cells.
    [Abstract] [Full Text] [Related] [New Search]