These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrasensitive detection of CA125 based on a triple signal amplification strategy with a huge number of loaded probes via exonuclease cyclic cleavage, rolling cyclic amplification and strand self-growth.
    Author: He L, Chen C, Liu Y, Hai H, Li J.
    Journal: Analyst; 2023 Jul 10; 148(14):3217-3225. PubMed ID: 37323073.
    Abstract:
    A novel electrochemiluminescence (ECL) aptamer biosensor with high sensitivity and selectivity for the detection of tumor biomarker carbohydrate antigen 125 (CA125) was constructed, and a strategy of triple amplification of signals was proposed using an exonuclease cyclic cleavage aptamer, combined with rolling ring amplification technologies, generating multi-branched dendritic double-stranded DNA to load a large number of probes through "strand self-growth". The double-stranded DNA, which is abbreviated as CP/CA dsDNA, formed by hybridizing the single strand of capture DNA (CP DNA) with the single strand DNA of the CA125 aptamer (CA Apt) was modified on Fe3O4@Au. When CA125 was added, CP/CA dsDNA was unwound, and CA125 specifically combined with CA Apt to form a protein-aptamer complex, leaving only CP DNA on the surface of Fe3O4@Au. RecJf exonuclease cleaved the aptamer in the protein-aptamer complex and released CA125, which recombined with other CA125 aptamers, to form a cycle that produces more CP DNA on Fe3O4@Au. Three ssDNA (H1, H2, and H3) were introduced and hybridized with CP DNA to form a dsDNA with a "+" configuration structure. Then phi29 DNA polymerase, T4 DNA ligase, deoxy-ribonucleoside triphosphate (dNTP) and padlock probes were added to form a large number of complementary strands of padlock probes (CS padlock probes) by rolling cyclic amplification. CS padlock probes were linked to the "+" type dsDNA; then ssDNA H4 was added and hybridized with the CS padlock probe to form multi-branched dendritic dsDNA. A large number of tris(2,2'-bipyridyl)ruthenium(II) probes were embedded in the double strands, resulting in an extremely strong ECL signal in the presence of the co-reactant tri-n-propylamine (TPA). There is a linear relationship between the ECL signals and CA125 concentrations in the range of 1.0 × 10-15-1.0 × 10-8 mg mL-1, and the detection limit was 2.38 × 10-16 mg mL-1. It has been used for the determination of CA125 in serum samples.
    [Abstract] [Full Text] [Related] [New Search]