These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ecofriendly recovery of copper from spent telecommunication printed circuit boards using an indigenous cyanogenic bacterium.
    Author: Beiki V, Mousavi SM, Naseri T.
    Journal: J Environ Manage; 2023 Oct 15; 344():118399. PubMed ID: 37336013.
    Abstract:
    In recent years, electronic waste (e-waste) production has increased due to the population's growth and high consumption. As a result of the high concentration of heavy elements in these wastes, their disposal has posed many environmental problems. On the other hand, due to the non-renewability of mineral resources and the presence of valuable elements such as Cu and Au in electronic waste, these wastes are considered secondary minerals for recovering valuable elements. Among electronic waste, recovery of metals from spent telecommunication printed circuit boards (STPCBs) is significant, which has not been addressed despite their high production worldwide. This study isolated an indigenous cyanogenic bacterium from alfalfa field soil. The 16S rRNA gene sequencing results showed that the best strain has 99.8% phylogenetic affinity with Pseudomonas atacamenisis M7DI(T) with the accession number SSBS01000008 with 1459 nucleotides. The effect of the culture medium, initial pH, glycine concentration, and methionine on the cyanide production of the best strain was investigated. The results showed that the best strain could produce 12.3 ppm cyanide in NB medium with an initial pH of 7 and a concentration of glycine and methionine of 7.5 g/L and 7.5 g/L, respectively. The one-step bioleaching method was performed, which led to the recovery of 98.2% of Cu from STPCBs powder after 5 days. Finally, XRD, FTIR, and FE-SEM analyses were performed to investigate the structure of the STPCBs powder before and after the bioleaching process, confirming the high Cu recovery.
    [Abstract] [Full Text] [Related] [New Search]