These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MEK inhibitor and anti-EGFR antibody overcome sotorasib resistance signals and enhance its antitumor effect in colorectal cancer cells. Author: Hondo N, Kitazawa M, Koyama M, Nakamura S, Tokumaru S, Miyazaki S, Kataoka M, Seharada K, Soejima Y. Journal: Cancer Lett; 2023 Jul 28; 567():216264. PubMed ID: 37336286. Abstract: The Kirsten rat sarcoma (KRAS) oncogene was "undruggable" until sotorasib, a KRASG12C selective inhibitor, was developed with promising efficacy. However, inhibition of mutant KRAS in colorectal cancer cells (CRC) is ineffective due to feedback activation of MEK/ERK downstream of KRAS. In this study, we screened for combination therapies of simultaneous inhibition to overcome sotorasib resistance using our previously developed Mix Culture Assay. We evaluated whether there was an additive effect of sotorasib administered alone and in combination with two or three drugs: trametinib, a MEK inhibitor, and cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody. The MAPK pathway was reactivated in KRASG12C-mutated cell lines treated with sotorasib alone. Treatment with KRAS and MEK inhibitors suppressed the reactivation of the MAPK pathway, but upregulated EGFR expression. However, the addition of cetuximab to this combination suppressed EGFR reactivation. This three-drug combination therapy resulted in significant growth inhibition in vitro and in vivo. Our data suggest that reactive feedback may play a key role in the resistance signal in CRC. Simultaneously inhibiting KRAS, MEK, and EGFR is a potentially promising strategy for patients with KRASG12C-mutated CRC.[Abstract] [Full Text] [Related] [New Search]